Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Tanaffos ; 20(3): 240-245, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-2169156

ABSTRACT

Background: Ventilation system besides other prevention strategies such as surface disinfecting and personal protective equipment (PPE) decrease the risk of coronavirus disease 2019 (COVID-19) infection. This study aimed to examine the ventilation system of an intensive care unit (ICU) in a hospital in Tehran, Iran to evaluate the potency of heating, ventilation, and air conditioning system (HVAC) for COVID-19 spread. Materials and Methods: Contamination of air turnover caves was evaluated in supplier diffuser and extractor grills of negative pressure HVAC by ten samples. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the samples was evaluated by the real time reverse transcription-polymerase chain reaction (PCR). Moreover, air conditioning and sick building syndrome (SBS) was assessed according to MM040EA questioning from health care workers. Results: In the health care workers, respiratory effects were more prevalent compared to other signs. Despite suitable air conditioning, this study highlighted carrier potency of ICU workers for SARS-COV-2. Conclusion: According to our results, although the HVAC of ICU ward had an appropriate air movement, it was not safe enough for health care workers.

2.
Environ Sci Pollut Res Int ; 29(50): 75338-75343, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1872664

ABSTRACT

After the outbreak of COVID-19, many dental clinics use dry fogging of hydrogen peroxide (H2O2) to disinfect the air and surfaces. Inhalation of highly concentrated solutions of H2O2 may cause severe respiratory problems. This study aimed to estimate the health risk assessments of inhalation exposure to dry fogging of H2O2 in a dental clinic. This cross-sectional, descriptive-analytical study was performed to determine the inhalation exposure and health risk of 9 dental clinic staff with H2O2 in six rooms. Occupational exposure to H2O2 was assessed using the OSHA VI-6 method and a personal pump with the flow rate of 500 mL/min connected to the midget fritted-glass impinger containing 15 mL of TiOSO4 collecting solution. The health effects of H2O2 exposure were assessed using a respiratory symptoms questionnaire. The health risk assessment of inhaled exposure to H2O2 was also performed using the method provided by the Singapore occupational health department. The mean respiratory exposure of clinic staff to H2O2 was ranged from 1.3 to 2.83 ppm for six rooms which was above the limits recommended by international organizations. Dyspnea (44.4%), cough (33.3%), and nasal burning (22.2%) were the most prevalent health problems. The results also showed a medium risk for endodontics and surgery, and lower risk for periodontics, restorative care, orthodontics, and prosthetics. The results of this study indicate that when using an automated hydrogen peroxide-vapor fogger, calculating the spraying time based on room volume and using the rooms after 30 min of fogging is very important and can greatly reduce the risk ranking.


Subject(s)
COVID-19 , Inhalation Exposure , Cross-Sectional Studies , Dental Clinics , Humans , Hydrogen Peroxide/analysis , Pandemics , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL